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+ exp [2z~iX. (B~ + Br)] ~ fj{½ei exp (2zcicej) Aps 
J 

+ ~ziB~. Aj exp (2zcic~j). exp [2rCi{oj. (B~ + Br)]} fp 

+exp [2~ix. (B;,-BT)] ~Z{½~J exp (-2.i~'j) 8,s 
J 

+ niB'n. A 2 exp (-21rio~j) BH 
BaH 

× e x p  [27~i~oj. (]3'1t-- BT)]}  • 
~a 

Summing further over the unit cells, the first term leads 
to sharp main reflections, the second and third terms 
lead to sharp satellite reflections located at BH + Br, 
where Bn is a reciprocal lattice vector based on the 
reciprocal-cell edges of the subcell. The generalized 
atomic scattering factor is 

fj(½ej exp (-2nio~j)+niAj. B~ exp ( - - 2 7 ~ i ~ j )  (12) 

for reflections at Bn+BT. For reflections at B H - B r  
signs change in the exponent of the phase factors of 
the generalized atomic scattering factor. 

Glossary of some more frequently used symbols 

a, b, c Base vectors of the subcell. 
a*, b*, c* Base vectors of the reciprocal lattice based on 

the subcell. 

Displacement vector of the pth atom in the 
sth subcell from its average position ~p. 
Average atomic scattering factor of the pth 
atom. 
Fractional increment of the atomic scattering 
factor of the pth atom in the sth cell. 
Reciprocal lattice vector of a main reflection. 
Reciprocal lattice vector of a difference re- 
flection of the ath set. 
Difference between B~ and BH. 
Phase factor of the contribution from the sth 
subcell to a difference reflection of the ath 
set. 
Generalized atomic scattering factor for dif- 
ference reflections of the ath set. 
Fourier transform of structure factors of re- 
flections belonging to the ath set. 
Patterson function based on intensities of 
reflections of the ath set. 
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The real and imaginary parts of Patterson functions based on 'e' and ' f '  satellites were calculated. In 
'e' satellite maps, Patterson interactions involving cations are most prominent and permit relatively 
simple calculation of the amplitudes and phases of 26 displacement modulation waves. The deformation 
of the silicate chain, which is apparently one of the major features of the plagioclase superstructure, is 
shown in detail. The interpretation of the ' f '  satellite Patterson function is less straightforward, but it 
shows clearly that the associated displacements are of very small amplitude, directed along [02~] and 
that they do not involve Na/Ca cations. 

1. Introduction 

In two earlier papers (Toman & Frueh, 1971; 
Toman & Frueh, 1972 henceforth referred to as TF1 
and TF2) the nature of the plagioclase superstructure 
was examined by studying the statistical distribution 
of the intensities of satellite reflections. The chemical 
composition of the sample examined in these two 

papers corresponds to a plagioclase with 55% anor- 
thite, and the results formulated there can be condensed 
as follows: 

(a) The intensity distributions of 'e' satellites (for 
terminology see Bown & Gay, 1958, or TF1) and of 
~f' satellites are qualitatively very different, suggesting 
that the 'e' and ~f' satellites are related to entirely dif- 
ferent aspects of the superstructure. 

A C 29A - 2 
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(b) The anisotropy of the intensity distribution of 'e' 
satellites and its variation with the square of the 
reciprocal vector suggests that the origin of ' e '  satellites 
is connected with the displacement by about 0.25- 
0.30/~ of atoms approximately parallel to the b axis. 

Following these results, the study was extended by 
computing three-dimensional Patterson functions 
based exclusively on the satellite intensities previously 
used in our statistical studies (TFI, TF2). The inter- 
pretation of the Patterson functions is based on the 
concept of generalized atomic scattering factors derived 
in the preceding paper (Toman & Frueh, 1973, hence- 
forth referred to as TF3). 

2. The Patterson function based on 
'e' satellite intensities 

The Patterson function of satellite intensities is defined 
in this paper as 

1 ~s  i~. exp ( _ 2  n iq .  B~) (1) u(n) = V , . ,  

where the summation is taken over reflections belong- 
ing to a particular set of satellites only, and where 
B~ is the corresponding reciprocal vector. In the case 
of 'e' satellites, 

Bh = B .  + p~ 

where Bn is the reciprocal lattice vector based on the 
unit cell of anorthite with h+k odd and l odd (b 
reflections), and I~ ~ is the vector showing the displace- 
ment of the reciprocal vectors of 'e' satellites from 'b' 
positions. In our case, 

lie = -- 0"062a* -- 0"051 b* + 0"219c*. 

The intensities in one satellite pair (the intensity 
at B n + p  ~ is I~, the intensity at B n - p  ~ is 177) are 
generally different, and because of Friedel's law we 
have 

1~ ~ = Ih; 

therefore, the Patterson function of 'e' satellites is a 
complex function. According to the results in TF3, we 
expect that the Patterson function of 'e' satellites will 
consist of convolutions of Fourier transforms of the 
generalized atomic factors centered at the end points 
of the average interatomic vectors. These convolutions 
(described in more detail in TF3) are generally 
complex, consisting of several positive and negative 
peaks and carrying information about displacements 
and/or substitutions of atoms in individual subcells. 
If we adopt the model of a modulated structure, they 
also carry information about phase relationships be- 
tween waves modulating individual atomic sites in- 
volved in particular Patterson interactions. 

In the case of 'e' satellites of the plagioclase, the 
summation in (1) is restricted to the Bn vectors cor- 
responding to 'b' reflections only; therefore, each con- 
volution placed at an end point of a corresponding 

interatomic vector is accompanied by identical con- 
volutions displaced by ½(a + b + e) and by negative con- 
volutions displaced by ½(a + b) and ½e. 

To simplify numerical calculations and to avoid 
extensive programming, instead of the function U(~) e, 
functions 

l ~ e  (I~ + I7~ ~) cos 2nq .  Bn C(~)=  2 n 
and 

S(q)= ;V ~'~ (l~n-S-n~) sin 2xq .  B.  
H 

were calculated. 
Based on these functions, the real part of the Pat- 

terson function is 

Re U01) ~ = cos 2nll .  [FC0I) + sin 2n~l. pes01) ; (3) 

similarly, the imaginary part of the Patterson function 
is 

Im U01) ~ = cos 2nll .  P~S01) + sin 2nI!. P~C01) • (4) 

For the numerical calculation of the Patterson func- 
tion, more than 1500 independent satellite intensities 
were used, and the real and imaginary parts of the 
Patterson function were evaluated in slightly more than 
a quarter of a unit cell (based on an anorthite-like unit 
cell). Both the real and the imaginary parts of this 
Patterson function differ very substantially from the 
Patterson function based on the main (a) reflections. Pat- 
terson maps based on the main reflections ofa plagioclase 
mainly show broad areas of high density corresponding 
to the superposition of many interaction vectors. On 
the other hand, Patterson maps calculated from 'e' 
satellites are simpler and show a number of prominent, 
well separated peaks corresponding to cation-cation, 
cation-tetrahedral atom, and cation-oxygen interac- 
tion vectors (the identification of Patterson interac- 
tions in this paper is based on 'average' atom coor- 
dinates published by Phillips, Colville & Ribbe, 1971, 
for Anzs). 

The prominence of the interaction vectors involving 
cations shows the extraordinary role they play in 
determining 'e' satellite intensities (see also TF2). 

100 e2"A -3 
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Fig. 1. Density values of Patterson function along a line going 
through centers of the main peak and of satellite peaks of a 
cation-cation interaction at u=0.525, v=0-005 and w= 
0"150; (a) real part; (b) imaginary part. Density in e 2 ,~-3, v 
in fractions of b unit cell edge. 



K. T O M A N  A N D  A. J. F R U E H  129 

In the light of our treatment of difference reflections 
(see TF3), atomic interaction vectors here are not as- 
sociated with simple convolutions of electron density 
functions (as is the case for crystals without a super- 
structure) but with convolutions of Fourier transforms 
of the generalized atomic scattering factors depending 
both on displacements of atoms in individual subcells 
from their average positions and on their substitutions. 
In our case, all these convolutions consist of three 
peaks arranged in a straight line, the 'central peak' 
and two 'satellite peaks'. Satellite peaks always have 
signs opposite to those of the 'central peak', which 
can be either positive or negative. The position vector 
of the central peak in the Patterson map corresponds to 
the interatomic vector of each particular Patterson 
interaction. The vectors connecting satellite peaks in 
convolutions do not differ significantly in different 
Patterson interactions, either in magnitude or in 
direction. The fact that these vectors have approximate- 
ly the same direction for all Patterson interactions 
means that all atoms are displaced from their average 
positions approximately in the same direction. This 
result does not depend on any assumption about the 
nature of the superstructure. 

2.1. Na/Ca cation-cation interactions 

The most prominent features of Patterson maps 
based on 'e' satellites are Patterson interactions cor- 
responding to the Na/Ca cation-cation vectors. To 
illustrate this, Fig. 1 shows the variation of the 
density along a line going through the centers of the 
central peak and of both satellite peaks of a cation- 
cation convolution. A striking similarity is apparent 
between this function and R~,q functions calculated in 
TF3 for different models of modulated structures (Figs. 
8 and 9 in TF3). 

The average direction of the line passing through 
the centers of both satellite peaks and of the central 
peak in cation-cation convolutions is [072] (relating to 
the anorthite-like unit cell) indicating the direction of 
the displacement of the cations from their mean posi- 
tions. The angle between this direction and the b axis 
is approximately 20 ° . In the volume of the Patterson 
space examined in this study (0 < x < 1, 0.10_< y < 0.60, 
0 _< z _< 0. 50) there are 4 cation-cation interactions 
represented by prominent peaks on the maps of both 
the real and the imaginary parts. To be able to proceed 
further with the analysis, we must accept certain as- 
sumptions about the nature of the superstructure. 

Let us assume that the plagioclase superstructure is 
a modulated structure, where the exact position of 
each atom in a given site is determined by a displace- 
ment modulation wave. Similarly, we assume that the 
occupation of each atomic site is determined by a 
density modulation wave. From the geometrical ar- 
rangement of the satellite reflections, it may be assumed 
that the wave vectors of all modulation waves in the 
structure are equal to Ii e . No assumptions are made 
about the wave form of the modulation waves, but it 

may be assumed that their amplitudes and phases may 
be different, but that their wave form is identical or 
very similar. Further, we accept the proposition of 
Korekawa & Jagodzinski (1967) that the phase of the 
modulation waves related to the atomic sites differing 
by ½c or by ½(a+b) differ by ~z, and that the atomic 
sites related by a vector ¼(a+b+c )  have identical 
phases of their modulation waves (related to an 
anorthite-like unit cell). Therefore, it remains to cal- 
culate the amplitudes and phases of the modulation 
waves related to all independent atomic sites of our 
plagioclase structure. 

A simple computation based on equation (9) in 
TF3 shows that the phase difference A~ between two 
modulation waves involved in a Patterson interaction 
can be calculated from maximum densities in the 
central peaks in the real and imaginary parts of the 
Patterson function (mr and m~ respectively). For  
almost any form of modulation wave we have: 

tan Ac~ = mJmr • 

In the application of this formula we assume that 
the phase of the displacement modulation wave as- 
sociated with the cation in 000 position is equal to 
zero. The phase calculation for the displacement 
modulation wave of the 00c cation site is listed in 
Table 1. (Megaw's notation of the atomic sites in 
feldspars is used throughout this paper - Megaw, 
1956.) 

Table 1. Displacement modulation waves o f  all inde- 
pendent atoms in plagioelase superstructure 

'Maximum' column shows the maximum absolute value of the 
central peak. Phase of the displacement wave is in rc. 

Maximum Displacement waves 
Atom Position e z/~.-a Amplitude Phase 

A 
Na/Ca 000 122 0.6 0.00 

00c 122 0.6 0.28 
7"1 0000 91 0-4 0.08 

000c 91 0.4 0.20 
7'1 m000 114 0-5 0.11 

mOOc 114 0"5 0"19 
/'2 0000 82 0-3 0"91 

000c 75 0-3 1-37 
Tz m000 89 0.3 1.12 

mOOc 88 0.3 1"16 
O,t(1) 0000 64 0-5 1 "43 

000c 66 0"5 0.92 
Oa(2) 0000 42 0.2 0-97 

000c 37 0.2 1"14 
OB 0000 18 0"1 0"46 

000c 18 0"1 0"82 
OB m000 18 0"1 1"39 

mOOc 34 0.2 0"95 
Oc 0000 66 0-4 0"00 

000c 68 0"5 0"28 
Oc m000 69 0"5 1 "96 

mOOc 67 0.5 0.28 
O, 0000 38 0.2 0-14 

000c 42 0.2 0.16 
On m000 31 0.2 0.20 

mOOc 33 0.2 0"07 

A C 2 9 A  - 2*  
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The determination of the displacements of cations 
from their average positions is slightly more difficult 
and less reliable, because it depends on assumed wave 
forms. Fig. 4 (Appendix) shows the dependence of the 
separation of satellite peaks on the amplitude of the 
modulation wave and on its form. The calculation was 
performed for models where both displacement 
modulation waves involved in a Patterson interaction 
have the same amplitude. Comparing these results with 
the observed separation of satellite peaks for cation- 
cation interactions, which on our Patterson maps is 
2.18 A, we obtain 0-57-0-63 A for the amplitudes of 
cation modulation waves. 

2.2. Cation-T-atom and cation-oxygen vectors. 
Altogether, 48 interaction vectors of this type can 

be identified in a quarter of a Patterson cell. Each of 
them is associated with a convolution similar in shape 
to the convolutions described in more detail in § 2. 
Lines connecting the satellite peaks in each convolu- 
tion have orientations identical within narrow limits, 
showing that all the atoms in the structure are displaced 
approximately in the same direction. Most Patterson 
interactions here have significant imaginary parts, and 
therefore phases associated with the displacement 
modulation waves involved were calculated in the same 
way as described in the preceding section for cation- 
cation vectors. 

To determine the amplitudes of the modulation 
waves of T-atoms and of oxygen atoms from Patterson 
interactions involving cations, it is possible to use a 
procedure similar to that employed in the previous 
section to determine the amplitude of cation displace- 
ment modulation waves. However, this method is not 
very efficient in this case, because the exact values of 
the separation of the satellite peaks frequently cannot 
be determined for these rather weaker convolutions 
(especially if partial overlaps occur). As is shown in 
the Appendix, the maximum density of the central 
peak of a Patterson interaction depends on the dis- 
placement amplitudes of both modulation waves in- 
volved in it (Fig. 5). This makes it possible to deter- 
mine the amplitudes of the displacement modulation 
waves of all atoms from the amplitude of the cation 
modulation wave (determined in the previous para- 
graph) and from maximum densities in the central 
peaks of Patterson interactions involving cations. A 
further check of amplitudes determined by using this 
method is possible by comparing their weighted aver- 
age with the average displacement obtained in our 
statistical study (TF2). The weighted average of ampli- 
tudes obtained from Patterson peaks (weights propor- 
tional to the squares of the atomic numbers of the 
atoms involved) is 0.39 A for a 'square' wave and 
0.42 A~ for a simple cosine wave. This corresponds to an 
average displacement of 0.35 A for the square wave 
and 0.27 A for a simple cosine wave, which compares 
well with the statistical result, 0.25-0.30 ,~, obtained in 
TF2 without any assumptions. The amplitudes of 

displacement modulation waves of all 26 independent 
atomic sites in the anorthite-like cell as determined 
from the Patterson peaks (simple cosine waves), 
together with their phases, are listed in Table 1. The 
amplitudes are indicated with one significant figure 
accuracy, which reflects both the difficulties inherent 
in extracting quantitative information from Patterson 
interactions, and the semiquantitative nature of these 
figures. Even with this limitation, these data are useful, 
because they reveal the periodic distortion of the silicate 
chain discussed in § 4, and they provide information 
for determining the phases of Fourier terms in an 
electron-density calculation based on satellite reflec- 
tions; this calculation is the next logical step in the 
investigation of the plagioclase superstructure. For 
atoms in sites related by translations ½c or ½(a + b), the 
amplitudes of the modulation waves are assumed to be 
equal and the phase shifted by n; for sites related by 
translations ½(a+b+c) ,  both the phases and the 
amplitudes of the modulation waves are assumed to 
be equal. Each entry in Table 1 was compiled from 
evaluation of two Patterson interactions involving 
atoms related to the same basic sites but displaced by 
½e or ½(a + b) or ½(a + b + c). When the above-mentioned 
Korekawa-Jagodzinski phase conditions were applied, 
they led to very similar phase values. 

3. Patterson function based 
on ~f' satellite intensities 

The Patterson function based on ~f' satellite intensities 
was calculated in much the same way as for the Pat- 
terson function based on 'e' satellite reflections, 

TI 
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T4 05 0 8  

' T 4  a _ _ ,  
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06' ,  T2 

TI 

03  
T3 

Fig. 2. Schematic representation of a portion of the silicate 
chain, showing displacement of atoms. Numbering of atoms is 
identical to that in Table 2. Arrows indicate schematically 
the directions and magnitudes of displacements. 
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described in § 2. Maps corresponding to the real and 
the imaginary parts were calculated, using about 1600 
independent intensities. Because the 7 '  satellite inten- 
sities from our sample are very weak, Patterson func- 
tions based on them probably contain more spurious 
features than the Patterson function of 'e' satellites. 
On 7 '  satellite maps, Patterson density is largely con- 
centrated in three regions (close to u=0.0, 0.5 and 
0.75), where it forms systems of extended, parallel 
streaks situated perpendicular to the [023] direction. 
It is interesting to note that streaks in the imaginary 
part of the Patterson function interpose positive and 
negative streaks in the real part. 

When comparing the positions of these streaks with 
a set of calculated interatomic vectors, we see a 
striking difference between the 7 '  and the 'e' satellite 
maps. In the case of the 7 '  satellite maps, areas of high 
Patterson density correspond not to interatomic vectors 
involving the Na/Ca cations, but to interatomic vectors 
involving some T-atoms and some oxygen atoms. At 
present we are not able to give a detailed interpretation 
of the 7 '  satellite Patterson function as we have in the 
case of 'e' satellites. The most likely interpretation of 
streaks observed there is that they correspond to over- 
lapping convolutions of Fourier transforms of gener- 
alized atomic scattering factors, where atoms are dis- 
placed by a very small distance in the [025] direction. 
From the density of the Patterson function we estimate 
that the displacements involved are 5-10 times smaller 
than those associated with 'e' satellites. The direction 
of displacements derived here is in reasonable agree- 
ment with the direction of the displacement found by 
intensity statistics in TF2, where [01T] was established 
for the direction of the displacements. 

4. Discussion 

In summarizing the results derived above on the Patter- 
son functions based on 'e' and 7 '  satellite intensities, we 

find that one problem which can be partially answered 
concerns the deformation of silicate chains in the super- 
structure. The general direction of displacement of all 
atoms in the plagioclase superstructure due to modula- 
tion waves causing 'e' satellites is [072]. Assuming some 
simple form of the modulation wave, it is possible to 
calculate the magnitudes of the displacements of atoms 
in one particular subcell of the superstructure (the 
anorthite-like unit cell) from information in Table 1. 
Assuming a simple cosine wave with wave vector II e, 
the results of such a calculation are shown in Table 2 
for atoms in a subcell where cation 000 has its maxi- 
mum positive displacement. Fig. 2 illustrates schemati- 
cally how individual atoms in a silicate chain are af- 
fected by these displacements. Silicate rings oriented 
parallel to the b axis are alternately lifted and lowered 
in the [07~] direction, whereas rings perpendicular to 
the b axis are twisted approximately around an axis 
going through oxygen atoms OB 00i0 and OB mzic, 
Alternatively, the deformation can be expressed as an 
alternate lifting and lowering of sheets of atoms [ap- 
proximating the (10T) planes] containing silicate rings 
parallel to the b axis. 

Fig. 3 illustrates schematically the variation of the 
magnitude and direction of these displacements through 
different subcells of the superstructure 'carried' by a 
modulation wave of wave vector pc. It is important to 
note that the amplitudes and phases of the displace- 
ment modulation waves, determined purely by dif- 
fraction methods without the use of any chemical 
evidence, compose themselves into a plausible, coher- 
ent picture of a periodic deformation of the silicate 
chains. 

Deformations of the silicate chains in the structure 
are accompanied by large displacements of cations 
(see Table 1). At present it is impossible to discuss a 
causal relationship between displacements of cations 
and deformations of silicate chains because two basic 
pieces of information are lacking: one is the evidence 

Table 2. Displacement of  atoms shown in a portion of  the silicate chain of  plagioclase in Fig. 3 
A t o m  Posit ion Displacement  A t o m  Posit ion Displacement  
T1 TI 00i0 + 0 . 3 / ~  05 Oc 0000 +0-4 
T I '  TI 000c + 0-2 05' Oc 000c + 0-4 
T2 T1 mzic - -  0"5 06 Oc mzO0 - -  0"5 
T2' Tt mzO0 - 0 " 5  06' Oc mzic - 0 " 4  
T3 7"2 00i0 - 0-3 07 OD 00i0 + 0.1 
T3'  Tz 000c -I- 0.1 07' Oo 000c + 0-2 
T4 T2 mzO0 +0"3 08 Oo mzic -0"1  
T4' Tz mzic + 0"3 08' O .  mzO0 - 0-2 
0 3  On 00i0 0.0 
0 4  On mzic + 0"2 

t.. I 
r v a  B e ~' 

Fig. 3. Schematic diagram of  silicate chain in plagioclase superstructure showing modula t ion  of displacements of  rings. 
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as to how cations are ordered in the superstructure. 
From a previous study (see TF1), we have an indica- 
tion that they are ordered in some way, but we have 
not as yet been able to derive from convolutions on 
Patterson maps the way in which they are ordered. 
The second piece of information still needed is the 
knowledge of the 'average' atom coordinates in a 
plagioclase of An55 composition. 

At present, we know how individual atoms are dis- 
placed from their average positions, but without 
knowledge of the coordinates corresponding to the 
'average' positions, it is impossible to calculate inter- 
atomic distances in individual subcells and their change 
owing to modulation. 

Obviously, much more work is needed before the 
plagioclase superstructure will be reasonably well 
understood. First, it is necessary to calculate the 'aver- 
age' structure from structure amplitudes of the 'a' reflec- 
tions of our crystal; second, it is desirable to calculate 
Fourier maps based on 'e' satellite amplitudes. Phases 
necessary for the evaluation of these maps can be 
derived from information given in this paper on the 
displacement modulation waves. As shown in TF3, 
these maps will show the Fourier transforms of the 
generalized atomic scattering factors, which can be 
interpreted much more easily than their convolutions 
studied in the present paper. These Fourier maps 
should ultimately provide information about the dis- 
placements and occupations of atomic sites in the 
structure derivable by X-ray diffraction. Further, they 
will provide a basis for a rigorous check of the validity 
of the structure model - a comparison between calcu- 
lated and observed satellite intensities. 

Another question which may be discussed in part, 
at least, is the mutual relationship of 'e' and ~"' satel- 
lites. The origin of 'e '  satellites is fairly well understood; 
they are connected with the displacements of cations, 
T-atoms and some of the oxygen atoms in the [072] 
direction by distances ranging from 0-1 to 0.6 A. The 
origin of ~ '  satellites, on the other hand, is less well 
understood, but we know that they are related to ad- 
ditional small (just a few hundredths of an A) displace- 
ments of some of the T-atoms and oxygen atoms (but 
not the cations) in the [027] direction. The wavelength 
of the modulation waves associated with ~f' satellites 
is half of the wavelength of the modulation waves as- 
sociated with 'e' satellites, but the direction of their 
wave vectors is identical. 

Finally, mention should be made of two aspects of 
'e' satellite Patterson maps which were consistently 
observed, but which we do not attempt to interpret 
here as the interpretation would depend too greatly 
on additional assumptions and because we believe that 
the features to which they relate may be elucidated in a 
less ambiguous way from Fourier maps. 

One of the aspects is the asymmetry of the vector 
density of 'satellite peaks' observed in all convolutions. 
(For cation-cation convolutions, see Fig. 1.) This may 
be related to Na/Ca order, but more definite conclu- 

sions depend largely on the assumed wave form of the 
modulation waves. Another aspect is the lack of exact 
agreement of the coordinates of maxima of 'central 
peaks' derived from the real and imaginary parts of the 
Patterson function. The slight misplacement of maxima 
which is observed on all cation-T-atom and cation- 
oxygen convolutions but not on cation-cation con- 
volutions, may be related to small differences in wave 
forms of individual modulation waves, which seems 
to be a prerequisite if the pattern of A1/Si order were 
also to be modulated. 

The support of this work by the National Science 
Foundation (GA 35246) is gratefully acknowledged. 

APPENDIX 

Using equation (9) from TF3, functions R'po were cal- 
culated for different models of modulated structures, 
where the form of the displacement modulation wave 
was either a simple cosine wave or a 'square' wave 
(composed of 5 cosine terms). Functions ~o~ and ~o'q 
were represented by exp (-kx2),  with k =  4 A, which 
was derived from the widths of Patterson peaks ob- 

2.0 

1.0 

J 

o 0'2 ' o, '  0'6 

Fig. 4. Variation of satellite peak separation with the amplitude 
of both displacement modulation waves involved in the 
interaction. Solid line, square wave; broken line, cosine 
wave. 

5 0  

20 

40 

I 0 '2 I 0 ~ 4 ' O' 6 

AB 

Fig. 5. Maximum density value in central peak of a Patterson 
interaction, where one displacement modulation wave has 
constant amplitude (0.55/~,) and the amplitude of the 
second modulation wave varies from 0 to 0-6 *. 
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served on our maps. Fig. 4 shows the variation of the 
'satellite peak' separation with the amplitude of the 
displacement. Both modulation waves involved in the 
Patterson interaction have the same amplitude and 
phase. In Fig. 5, the maximum density in the central 
peak is shown for the Patterson interaction of two 
displacement modulation waves with equal phase but 
with different amplitudes. The amplitude of one wave 
is constant (0.55 A); the amplitude of the other modul- 
tion wave varies from 0 to 0.6 A. 

Note added 29 August 1972. The least squares refine- 
ment of atomic coordinates based on measured 'a' 
reflections from this sample has been completed and 
published elsewhere. It produced coordinates that in 
some cases (Na/Ca cations) differed substantially from 

those given by Phillips et al. (1971) but these differences 
do not effect the conclusions reached in this paper. 
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A modification of the symbolic-addition procedure, based on the introduction of a 'phase function', 
is proposed. This function which determines the numerical values of the symbols, enables one to select 
rapidly the best solution from a large number of possible ones. Examples of non-centrosymmetric 
structures solved by this method are given here. 

Introduction 

It is well known that the most critical part of solving 
non-centrosymmetric structures by direct methods lies 
in the determination of a starting set of numerical 
phases. The number of such phases increases with the 
complexity of the structure (Germain &Woolfson, 1968). 

Karle and Karle who have demonstrated the power 
of these methods have developed a successful proce- 
dure using symbols (Karle & Karle, 1966). The main 
difficulties in using this procedure are: 

(a) in the first step, single indications of phases from 
equation (1) must be accepted 

~Hr~(pK-'I-~H_K (Cochran, 1955), (1) 

(b) considerable care must be applied in the use of 
equation (2) 

~0H~ <~0K+rPH--K>K (Karle & Karle, 1966) (2) 

(c) determination of the numerical values of the 
symbols. 

* Present address: Institut de Chimie des Substances 
Naturelles du C.N.R.S. 91, Gif sur Yvette, France. 

Starting with numerical phases instead of symbols, 
the multisolution approach (Germain & Woolfson, 
1968; Germain, Main & Woolfson, 1970, 1971) seems 
to be themost  practical 'computer-based' method but 
is however limited in view of computational cost and, 
in unfavourable cases, of the number of Fourier synthe- 
ses to examine. 

The need for a safe procedure to assign numerical 
values to the symbol used in the symbolic-addition 
method led us to the formulation of an appropriate 
test called 'the phase function' (Riche, 1970). We 
showed that the most probable combination of phases 
{~h} belonging to a set of high ]E[ values is given by 
the maximum of relation (6). 

Later on, Schenk (1971) used some practical tests 
to select numerical values for the symbols. One of 
them (Q function) could be related to the phase func- 
tion. 

We recall briefly how we formulated relation (6) in 
{} I. Use of the phase function and the change it pro- 
duces in the symbolic-addition method is shown in {} II. 
The practical procedure for phase determination is 
described in {} III. In § IV results are discussed. 


